Публикации

  • 2020 год:
    • статьи в зарубежных журналах

A. Tarutin, A. Kasyanova, J. Lyagaeva, G. Vdovin, D. Medvedev. Towards high-performance tubular-type protonic ceramic electrolysis cells with all-Ni-based functional electrodes. Journal of Energy Chemistry. 2020. V. 40. P. 65–74.

https://doi.org/10.1016/j.jechem.2019.02.014.

  • 2019 год:
    • статьи в зарубежных журналах

V. Sadykov, A. Shmakov, D. Medvedev, E. Sadovskaya, E. Pikalova, N. Eremeev, V. Belyaev, Y. Lyagaeva, Z. Vinokurov. Tailoring the structural, thermal and transport properties of Pr2NiO4+δ through Ca-doping strategy. Solid State Ionics. 2019. V. 333. P. 30–37.

https://doi.org/10.1016/j.ssi.2019.01.014.

N. Danilov, J. Lyagaeva, G. Vdovin, D. Medvedev. Multifactor performance analysis of reversible solid oxide cells based on proton-conducting electrolytes. Applied Energy. 2019. V. 237. P. 924–934.

https://doi.org/10.1016/j.apenergy.2019.01.054.

A. Tarutin, J. Lyagaeva, A. Farlenkov, S. Plaksin, G. Vdovin, A. Demin, D. Medvedev. A reversible protonic ceramic cell with symmetrically designed Pr2NiO4+δ-based electrodes: fabrication and electrochemical features. Materials. 2019. V. 12. № 1. Номер статьи 118.

https://doi.org/10.3390/ma12010118.

L. Hakimova, A. Kasyanova, A. Farlenkov, J. Lyagaeva, D. Medvedev, A. Demin, P. Tsiakaras. Effect of isovalent substitution of La3+ in Ca-doped LaNbO4 on the thermal and electrical properties. Ceramic International. 2019. V. 45, № 1. P. 209–215.

https://doi.org/10.1016/j.ceramint.2018.09.153.

A.S. Kalyakin, J.G. Lyagaeva, A.Yu. Chuikin, A.N. Volkov, D.A. Medvedev. A high temperature electrochemical sensor based on CaZr0.95Sc0.05O3–δ for humidity analysis in oxidation atmospheres. Journal of Solid State Electrochemistry. 2019. V. 23, № 1. P. 73–79.

https://doi.org/10.1007/s10008-018-4108-7.

E.Yu. Pikalova, V.A. Sadykov, E.A. Filonova, N.F. Eremeev, E.M. Sadovskaya, S.M. Pikalov, N.M. Bogdanovich, J.G. Lyagaeva, A.A. Kolchugin, L.B. Vedmid’, A.V. Ishchenko, V.B. Goncharov. Structure, oxygen transport properties and electrode performance of Ca-substituted Nd2NiO4. Solid State Ionics. 2019. V. 335. P. 53–60.

https://doi.org/10.1016/j.ssi.2019.02.012.

P. Tsiakaras, B. Long, H. Yang, M.Li, M-S. Balogun, W. Mai, G. Ouyang, Y. Tong, S. Song. Interface charges redistribution enhanced monolithic etched copper foam-based Cu2O layer/TiO2 nanodots heterojunction with high hydrogen evolution electrocatalytic activity. Applied Catalysis B: Environmental. 2019. V. 243. P. 365–372.

https://doi.org/10.1016/j.apcatb.2018.10.039.

E. Gorbova, P. Tsiakaras, H. Lei, J. Piao, A. Brouzgou, Z. Liang. Synthesis of nitrogen-doped mesoporous carbon nanosheets for oxygen reduction electrocatalytic activity enhancement in acid and alkaline media. International Journal of Hydrogen Energy. 2019. V. 44, P. 4423–4431.

https://doi.org/10.1016/j.ijhydene.2018.11.096.

P. Tsiakaras, S. Jing, Y. Zhang, F. Chen, H. Liang, S. Yin. Novel and highly efficient cathodes for Li-O2 batteries: 3D self-standing NiFe@NC-functionalized N-doped carbon nanonet derived from Prussian blue analogues/biomass composites. Applied Catalysis B: Environmental. 2019. V. 245. P. 721–732.

https://doi.org/10.1016/j.apcatb.2019.01.032.

P. Tsiakaras, W. Gong, Z. Jiang, R. Wu, Y.Liu, L. Huang, N. Hu,  P.K. Shen. Cross-double dumbbell-like Pt–Ni nanostructures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation. Applied Catalysis B: Environmental. 2019. V. 246. P. 277–283.

https://doi.org/10.1016/j.apcatb.2019.01.061.

P. Tsiakaras, G. Zhang, Y. Shi, H. Wang, L. Jiang, X. Yu, S. Jing, S. Xing. A facile route to achieve ultrafine Fe2O3 nanorods anchored on graphene oxide for application in lithium-ion battery. Journal of Power Sources. 2019. V. 416. P. 118–124.

https://doi.org/10.1016/j.jpowsour.2019.01.091. 

P. Tsiakaras, H. Liang, F.Chen, M. Zhang, S. Jing, B. Shen, S. Yin. Highly performing free standing cathodic electrocatalysts for Li-O2 batteries: CoNiO2 nanoneedle arrays supported on N-doped carbon nanonet. Applied Catalysis A: General. 2019. V. 574. P. 114–121.

https://doi.org/10.1016/j.apcata.2019.01.027.

P. Tsiakaras, Z. Meng, S. Cai, R. Wang, H. Tang, S. Song. Bimetallic−organic framework-derived hierarchically porous Co-Zn-N-C as efficient catalyst for acidic oxygen reduction reaction. Applied Catalysis B: Environmental. 2019. V. 244. P. 120–127.

https://doi.org/10.1016/j.apcatb.2018.11.037. 

P. Tsiakaras, H. Liang, Y. Zhang, F. Chen, S.Jing, Sh. Yin. A novel NiFe@NC-functionalized N-doped carbon microtubule network derived from biomass as a highly efficient 3D free-standing cathode for Li-CO2 batteries. Applied Catalysis B: Environmental. 2019. V. 244. P. 559–567.

https://doi.org/10.1016/j.apcatb.2018.11.075. 

P. Tsiakaras, C. Yu, J. Lu, L. Luo, F. Xu, P. K. Shen, S. Yin. Bifunctional catalysts for overall water splitting: CoNi oxyhydroxide nanosheets electrodeposited on titanium sheets. Electrochimica Acta. 2019. V. 301. P. 449–457. 

https://doi.org/10.1016/j.electacta.2019.01.149.

P. Tsiakaras, L. Luo, H. S. Abbo, S. J.J.Titinchi, S.Yin. Highly efficient electrocatalysts for oxygen reduction reaction: Nitrogen-doped PtNiMo ternary alloys. International Journal of Hydrogen Energy. 2019. V. 44. P. 6582–6591.

https://doi.org/10.1016/j.ijhydene.2019.01.185. 

P. Tsiakaras, S. Jing, D. Wang, S. Yin, J. Lu, P.K. Shen. P-doped CNTs encapsulated nickel hybrids with flower-like structure as efficient catalysts for hydrogen evolution reaction. Electrochimica Acta. 2019. V. 298. P. 142–149.

https://doi.org/10.1016/j.electacta.2018.12.055. 

  • 2018 год:
    • статьи в зарубежных журналах

W. Wang, D. Medvedev, Z. Shao. Gas humidification impact on the properties and performance of perovskite-type functional materials in proton-conducting solid oxide cells. Advanced Functional Materials. 2018. V. 28, № 48. Номер статьи 1802592.

https://doi.org/10.1002/adfm.201802592.

A.V. Kasyanova, J.G. Lyagaeva, N.A. Danilov, S.V. Plaksin, A.S. Farlenkov, D.A. Medvedev, A.K. Demin. Ceramic and transport characteristics of electrolytes based on Mg-doped LaYO3. Russian Journal of Applied Chemistry. 2018. V. 91. № 5. P. 770–777.

https://doi.org/10.1134/S1070427218050075.

N. Danilov, J. Lyagaeva, G. Vdovin, E. Pikalova, D. Medvedev. Electricity/hydrogen conversion by the means of a protonic ceramic electrolysis cell with Nd2NiO⁠4+δ-based oxygen electrode. Energy Conversion and Management. 2018. V. 172. P. 129–137.

https://doi.org/10.1016/j.electacta.2018.07.179.

N.A. Danilov, J.G. Lyagaeva, D.A. Medvedev, A.K. Demin, P. Tsiakaras. Transport properties of highly dense proton-conducting BaCe0.8–xZrxDy0.2O3–δ materials in low- and high-temperature ranges. Electrochimica Acta. 2018. V. 284. P. 551–559.

https://doi.org/10.1016/j.electacta.2018.07.179.

N. Danilov, A. Tarutin, J. Lyagaeva, G. Vdovin, D. Medvedev. CO2-promoted hydrogen production in a protonic ceramic electrolysis cell. Journal of Materials Chemistry A. 2018. V. 6. № 34. P. 16341–16345.

https://doi.org/10.1039/C8TA05820B.

Yu.G. Lyagaeva, N.A. Danilov, M.Yu. Gorshkov, G.K. Vdovin, B.D. Antonov, A.K. Demin, D.A. Medvedev. Functionality of lanthanum, neodymium, and praseodymium nickelates as promising electrode systems for proton-conducting electrolytes. Russian Journal of Applied Chemistry. 2018. V. 91. № 4. P. 583–590.

https://doi.org/10.1134/S1070427218040080.

J. Lyagaeva, N. Danilov, A. Tarutin, G. Vdovin, D. Medvedev, A. Demin, P. Tsiakaras. Designing a protonic ceramic fuel cell with novel electrochemically active oxygen electrodes based on doped Nd0.5Ba0.5FeO3–δ. Dalton Transactions. 2018. V. 47. № 24. P. 8149–8157.

https://doi.org/10.1039/c8dt01511b.

E. Pikalova, A. Kolchugin, N. Bogdanovich, D. Medvedev, J. Lyagaeva, I. Vedmid, M. Ananyev, S. Plaksin, A. Farlenkov. Stability of Pr2–xCaxNiO4+δ as cathode materials for electrochemical devices based n oxygen ion and proton conducting solid state electrolytes. International Journal of Hydrogen Energy. 2018. In press.

http://dx.doi.org/10.1016/j.ijhydene.2018.06.023.

A. Kalyakin, A. Volkov, A. Vylkov, E. Gorbova, D. Medvedev, A. Demin, P. Tsiakaras. An electrochemical method for the determination of concentration and diffusion coefficient of ammonia‑nitrogen gas mixtures. Journal of Electroanalytical Chemistry. 2018. V. 808. P. 133–136.

https://doi.org/10.1016/j.jelechem.2017.12.001.

P. Tsiakaras, L. Zhang, J. Lu, S. Yin, L. Luo, S. Jing, A. Brouzgou, J. Chen, P.K. Shen. One-pot synthesized boron-doped RhFe alloy with enhanced catalytic performance for hydrogen evolution reaction. Applied Catalysis B: Environmental. 2018. V. 230. P. 58–64.

https://doi.org/10.1016/j.apcatb.2018.02.034.

P. Tsiakaras, M. Yi, Y. Hu, K. Wang, Y. Wang, S. Song. Enhancement of oxygen reduction reaction performance: The characteristic role of FeN coordinations. Electrochimica Acta. 2018. V. 260. P. 264–273.

https://doi.org/10.1016/j.electacta.2017.11.189.

E.A. Filonova, A.R. Gilev, L.S. Skutina, A.I. Vylkov, D.K. Kuznetsov, V.Ya. Shur. Double Sr2Ni1−xMgxMoO6 perovskites (x = 0, 0.25) as perspective anode materials for LaGaO3-based solid oxide fuel cells. Solid State Ionics. 2018. V. 314. P. 112–118.

https://doi.org/10.1016/j.ssi.2017.11.019.

P. Tsiakaras, S. Jing, L. Zhang, L. Luo, J. Lu, S. Yin, P.K. Shen. N-doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction. Applied Catalysis B: Environmental. 2018. V. 224. P. 533–540.

https://doi.org/10.1016/j.apcatb.2017.10.025.

P.Tsiakaras, Z.Pan, K. Wan, Y.Wang, S.Song. In-situ electrosynthesis of hydrogen peroxide and wastewater treatment application: A novel strategy for graphite felt activation. Applied Catalysis B: Environmental. 2018. V. 237. P. 392–400.

https://doi.org/10.1016/j.apcatb.2018.05.079.

P. Tsiakaras, F. Tzorbatzoglou, A. Brouzgou, S. Jing, Y. Wang, S. Song. Oxygen reduction and hydrogen oxidation reaction on novel carbon supported PdxIry electrocatalysts. International Journal of Hydrogen Energy. 2018. V. 43. P. 11766–11777.

https://doi.org/10.1016/j.ijhydene.2018.02.071.

    • статьи в российских журналах

Ю.Г. Лягаева, Н.А. Данилов, М.Ю. Горшков, Г.К. Вдовин, Б.Д. Антонов, A.K. Демин. Функциональность никелитов лантана, неодима и празеодима как перспективных электродных систем для протонпроводящих электролитов. Журнал прикладной химии. 2018. Т. 91. № 4. C. 513–521.

  • 2017 год:
    • статьи в зарубежных журналах

N. Danilov, E. Pikalova, J. Lyagaeva, B. Antonov, D. Medvedev, A. Demin, P. Tsiakaras. Grain and grain boundary transport in BaCe0.5Zr0.3Ln0.2O3−δ (Ln – Y or lanthanide) electrolytes attractive for protonic ceramic fuel cells application. Journal of Power Sources. 2017. V. 366. P. 161–168.

https://doi.org/10.1016/j.jpowsour.2017.09.021.

J. Lyagaeva, D. Medvedev, E. Pikalova, S. Plaksin, A. Brouzgou, A. Demin, P. Tsiakaras. A detailed analysis of thermal and chemical compatibility of cathode materials suitable for BaCe0.8Y0.2O3–δ and BaZr0.8Y0.2O3–δ proton electrolytes for solid oxide fuel cell application. International Journal of Hydrogen Energy. 2017. V. 42, № 3. P. 1715–1723.

http://dx.doi.org/10.1016/j.ijhydene.2016.07.248.

J. Yu, H.Liu, S. Song, Y. Wang, P. Tsiakaras. Electrochemical reduction of carbon dioxide at nanostructured SnO2/carbon aerogels: The effect of tin oxide content on the catalytic activity and formate selectivity. Applied Catalysis A: General. 2017. V. 545. P. 159–166.

https://doi.org/10.1016/j.apcata.2017.07.043.

S. Cai, Z. Meng, H. Tang, Y. Wang, P. Tsiakaras. 3D Co-N-doped hollow carbon spheres as excellent bifunctional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction. Applied Catalysis B: Environmental. 2017. V. 217. P. 477–484.

https://doi.org/10.1016/j.apcatb.2017.06.008.

A.Tan, Y. Wang, Z. Fu, P. Tsiakaras, Z. Liang.Highly effective oxygen reduction reaction electrocatalysis: Nitrogen-doped hierarchically mesoporous carbon derived from interpenetrated nonporous metal-organic frameworks. Applied Catalysis B: Environmental. 2017. V. 218. P. 260–266.

https://doi.org/10.1016/j.apcatb.2017.06.051.

E.Yu. Pikalova, D.A. Medvedev, A.F. Hasanov. Structure, stability, and thermomechanical properties of Ca-substituted Pr2NiO4+δ. Semiconductors. 2017. V. 59, № 4. P. 694–702.

http://dx.doi.org/10.1134/S1063783417040187.

N. Danilov, J. Lyagaeva, A. Kasyanova, G. Vdovin, D. Medvedev, A. Demina, P. Tsiakaras. The effect of oxygen and water vapor partial pressures on the total conductivity of BaCe0.7Zr0.1Y0.2O3–δ. Ionics. 2017. V. 23, № 3. P. 795–801.

http://dx.doi.org/10.1007/s11581-016-1961-1.

E.P. Antonova, A.A. Kolchugin, E.Yu. Pikalova, D.A. Medvedev, N.M. Bogdanovich. Development of electrochemically active electrodes for BaCe0.89Gd0.1Cu0.01O3–δ proton-conducting electrolyte. Solid State Ionics. 2017. V. 306. P. 55–61.

http://dx.doi.org/10.1016/j.ssi.2017.02.001.

A.A. Murashkina, E.Yu. Pikalova, D.A. Medvedev. Gd-doped SrTi0.5Fe0.5O3–δ mixed ionic-electronic conductors: structural, thermal and electrical properties. Ionics. 2017. V. 23, № 9. P. 2351–2357.

http://dx.doi.org/10.1007/s11581-017-2075-0.

N. Danilov, J. Lyagaeva, G. Vdovin, D. Medvedev, A. Demin, P. Tsiakaras. An electrochemical approach for analyzing electrolyte transport properties and their effect on protonic ceramic fuel cell performance. ACS Applied Materials & Interfaces. 2017. V. 9, № 32. P. 26874–26884.

http://dx.doi.org/10.1021/acsami.7b07472.

N.A. Danilov, A.P. Tarutin, J.G. Lyagaeva, E.Yu. Pikalova, A.A Murashkina, D.A. Medvedev, M.V. Patrakeev, A.K. Demin. Affinity of YBaCo4O7+δ-based layered cobaltites with protonic conductors of cerate-zirconate family. Ceramics International. 2017. V. 43, № 17. P. 15418–15423.

https://doi.org/10.1016/j.ceramint.2017.08.083.

J. Lyagaeva, G. Vdovin, L. Hakimova, D. Medvedev, A. Demin, P. Tsiakaras. BaCe0.5Zr0.3Y0.2–xYbxO3–δ proton-conducting electrolytes for intermediate-temperature solid oxide fuel cells. Electrochimica Acta. 2017. V. 251. P. 554–561.

https://doi.org/10.1016/j.electacta.2017.08.149.

L.P. Putilov, V.I. Tsidilkovski, The role of deep acceptor centers in the oxidation of acceptor-doped wide-band-gap perovskites ABO3. Journal of Solid State Chemistry. 2017. V. 247. P. 147–155.

http://dx.doi.org/10.1016/j.jssc.2017.01.010.

Y. Wang, H. Liu, K. Wang, S. Song, P. Tsiakaras. 3D interconnected hierarchically porous N-doped carbon with NH3 activation for efficient oxygen reduction reaction. Applied Catalysis B: Environmental. 2017. V. 210. P. 57–66.

http://dx.doi.org/10.1016/j.apcatb.2017.03.054.

V. Tsidilkovski, Anton Kuzmin, L. Putilov, V. Balakireva. H/D isotope effect for hydrogen solubility in BaZr0.9Y0.1O3–δ: Chemical expansion studies. Solid State Ionics. 2017. V. 301. P. 170–175.

http://dx.doi.org/10.1016/j.ssi.2017.01.028.

K. Wan, A.-D. Tan, Z.-P. Yu, Z.-X. Liang, J.-H. Piao, P. Tsiakaras. 2D nitrogen-doped hierarchically porous carbon: Key role of low dimensional structure in favoring electrocatalysis and mass transfer for oxygen reduction reaction. Applied Catalysis B: Environmental. 2017. V. 209. P. 447–454.

http://dx.doi.org/10.1016/j.apcatb.2017.03.014.

D. Medvedev, A. Kalyakin, A. Volkov, A. Demin, P. Tsiakaras. Electrochemical moisture analysis by combining oxygen- and proton-conducting ceramic electrolytes. Electrochemistry Communications. 2017. V. 76. P. 55–58.

http://dx.doi.org/10.1016/j.elecom.2017.01.003.

A. Volkov, E. Gorbova, A. Vylkov, D. Medvedev, A. Demin, P. Tsiakaras. Design and applications of potentiometric sensors based on proton-conducting ceramic materials. A brief review. Sensors & Actuators: B. Chemical. 2017. V. 244. P. 1004–1015.

http://dx.doi.org/10.1016/j.snb.2017.01.097.

L.S. Skutina, A.I. Vylkov, D.A. Medvedev, E.A. Filonova. Features of structural, thermal and electrical properties of Mo-based composite materials as fuel electrodes for high-temperature applications. Journal of Alloys and Compounds. 2017. V. 705. P. 854–861.

http://dx.doi.org/10.1016/j.jallcom.2017.02.193.

J. Lyagaeva, N. Danilov, D. Korona, A. Farlenkov, D. Medvedev, A. Demin, I. Animitsa, P. Tsiakaras. Improved ceramic and electrical properties of CaZrO3-based proton-conducting materials prepared by a new convenient combustion synthesis method. Ceramics International. 2017. V. 43, № 9. P. 7184–7192.

http://dx.doi.org/10.1016/j.ceramint.2017.03.006.

H. Tang, Y. Zeng, Y. Zeng, R. Wang, S. Cai, C. Liao, H. Cai, X. Lu, P. Tsiakaras, Iron-embedded nitrogen doped carbon frameworks as robust catalyst for oxygen reduction reaction in microbial fuel cells. Applied Catalysis B: Environmental. 2017. V. 202. P. 550–556.

http://dx.doi.org/10.1016/j.apcatb.2016.09.062.

G.-F. Long, X.-H. Li, K. Wan, Z.-X. Liang, J.-H. Piao, P. Tsiakaras. Pt/CN-doped electrocatalysts: Superior electrocatalytic activity for methanol oxidation reaction and mechanistic insight into interfacial enhancement. Applied Catalysis B: Environmental. 2017. V. 203. P. 541–548.

http://dx.doi.org/10.1016/j.apcatb.2016.10.055.

  • 2016 год:
    • статьи в зарубежных журналах

J. Lyagaeva, N. Danilov, G. Vdovin, J. Bu, D. Medvedev, A. Demin, P. Tsiakaras. A new Dy-doped BaCeO3–BaZrO3 proton-conducting material as a promising electrolyte for reversible solid oxide fuel cells. Journal of Materials Chemistry A, 2016. V. 4, № 40. P. 15390–15399.
http://dx.doi.org/10.1039/C6TA06414K.

N. Danilov, G. Vdovin, O. Reznitskikh, D. Medvedev, A. Demin, P. Tsiakaras. Physicо-chemical characterization and transport features of proton-conducting Sr-doped LaYO3 electrolyte ceramics. Journal of the European Ceramic Society. 2016. V. 36, № 11. P. 2795–2800.

http://dx.doi.org/10.1016/j.jeurceramsoc.2016.04.018.

N. Kochetova, I. Animitsa, D. Medvedev, A. Demin, P. Tsiakaras. Recent activity in the development of proton-conducting oxides for high-temperature applications. RSC Advances. 2016. V. 6, № 77. P. 73222–73268.

http://dx.doi.org/10.1039/c6ra13347a.

A. Kalyakin, J. Lyagaeva, D. Medvedev, A. Volkov, A. Demin, P. Tsiakaras. Characterization of proton-conducting electrolyte based on La0.9Sr0.1YO3–δ and its application in a hydrogen amperometric sensor. Sensors and Actuators B: Chemical. 2016. V. 225. P. 446–452.

http://dx.doi.org/10.1016/j.snb.2015.11.064.

V.I. Tsidilkovski, L.P. Putilov. The role of deep acceptor levels in hydration and transport processes in BaZr1–xYxO3–δ and related materials. Journal of Solid State Electrochemistry. 2016. V. 20, № 3. P. 629–643.

http://dx.doi.org/10.1007/s10008-015-3087-1.

D.A. Medvedev, J.G. Lyagaeva, E.V. Gorbova, A.K. Demin, P. Tsiakaras. Advanced materials for SOFC application: Strategies for the development of highly conductive and stable solid oxide proton electrolytes. Progress in Materials Science. 2016. V. 75. P. 38–79.

http://dx.doi.org/10.1016/j.pmatsci.2015.08.001.

J. Lyagaeva, B. Antonov, L. Dunyushkina, V. Kuimov, D. Medvedev, A. Demin, P. Tsiakaras.Acceptor doping effects on microstructure, thermal and electrical properties of proton-conducting BaCe0.5Zr0.3Ln0.2O3−δ (Ln = Yb, Gd, Sm, Nd, La or Y) ceramics for solid oxide fuel cell applications. Electrochimica Acta. 2016. V. 192. P. 80–88.

http://dx.doi.org/10.1016/j.electacta.2016.01.144.

E. Pikalova, D. Medvedev. Effect of anode gas mixture humidification on the electrochemical performance of the BaCeO3-based protonic ceramic fuel cell. International Journal of Hydrogen Energy. 2016. V. 41, № 6. P. 4016–4025.

http://dx.doi.org/10.1016/j.ijhydene.2015.11.092.

A. Kalyakin, A. Volkov, J. Lyagaeva, D. Medvedev, A. Demin, P. Tsiakaras. Combined amperometric and potentiometric hydrogen sensors based on BaCe0.7Zr0.1Y0.2O3–δ proton-conducting ceramic. Sensors and Actuators B: Chemical. 2016. V. 301. P. 175–182.

http://dx.doi.org/10.1016/j.snb.2016.03.017.

D. Medvedev, J. Lyagaeva, G. Vdovin, S. Beresnev, A. Demin, P. Tsiakaras. A tape calendering method as an effective way for the preparation of proton ceramic fuel cells with enhanced performance. Electrochimica Acta. 2016. V. 210. P. 681–688.
http://dx.doi.org/10.1016/j.electacta.2016.05.197.

    • статьи в российских журналах

Ю.Г. Лягаева, Г.К. Вдовин, И.В. Николаенко, Д.А. Медведев, А.К. Демин. Модифицирование BaCe0.5Zr0.3Y0.2O3–δ оксидом меди: влияние на структурные и транспортные свойства. Физика и Техника Полупроводников. 2016. Т. 50, № 6. Р. 854–858.

http://journals.ioffe.ru/articles/43218 (http://dx.doi.org/10.1134/S1063782616060142).

  • 2015 год:
    • статьи в зарубежных журналах

D. Medvedev, Yu. Lyagaeva, S. Plaksin, A. Demin, P. Tsiakaras. Sulphur and carbon tolerance of BaCeO3–BaZrO3 proton-conducting materials. Journal of Power Sources. 2015. V. 273. P. 716–723.

http://dx.doi.org/10.1016/j.jpowsour.2014.09.116.

J. Lyagaeva, D. Medvedev, A. Demin, P. Tsiakaras. Insights on thermal and transport features of BaCe0.8–xZrxY0.2O3–δ proton-conducting materials. Journal of Power Sources. 2015. V. 278. P. 436–444.

http://dx.doi.org/10.1016/j.jpowsour.2014.12.024.

J. Lyagaeva, D. Medvedev, E. Filonova, A. Demin, P. Tsiakaras. Textured BaCe0.5Zr0.3Ln0.2O3−δ (Ln = Yb, Y, Gd, Sm, Nd and La) ceramics obtained by the aid of solid-state reactive sintering method. Scripta Materialia. 2015. V. 109. P. 34–37.

http://dx.doi.org/10.1016/j.scriptamat.2015.07.012.

G. Fadeyev, A. Kalyakin, E. Gorbova, A. Brouzgou, A. Demin, A. Volkov, P. Tsiakaras. A simple and low-cost amperometric sensor for measuring H2, CO, and CH4. Sensors and Actuators B: Chemical. 2015. V. 221. P. 879–883.

http://dx.doi.org/10.1016/j.snb.2015.07.034.

E.Yu. Pikalova, N.M. Bogdanovich, A.A. Kolchugin, A. Brouzgou, D.I. Bronin, S.V. Plaksin, A.F. Khasanova, P. Tsiakaras. Effect of nature of the ceramic component of the composite electrodes based on La1.7Ca(Sr)0.3NiO4+δ on their electrochemical performance. ECS Transactions. 2015. V. 68, № 1. P. 809–815.

http://dx.doi.org/10.1149/06801.0809ecst.

S. Mitri, D. Medvedev, S. Kontou, A. Demin, P. Tsiakaras. Polarization study of Fe|BaCe0.5Zr0.3Y0.08Yb0.08Cu0.04O3–δ|Fe electrochemical cells in wet H2 atmosphere. International Journal of Hydrogen Energy. 2015. V. 40, № 42. P. 14609–14615.

http://dx.doi.org/10.1016/j.ijhydene.2015.05.020.

    • статьи в российских журналах

А.С. Калякин, Г.И. Фадеев, А.Н. Волков, Е.В. Горбова, А.К. Демин. Электроды для потенциометрических твердоэлектролитных сенсоров с неразделенными газовыми пространствами для измерения содержания горючих газов CO и Н2 в газовых смесях. Электрохимия. 2015. Т. 51, № 2. Р. 162–170.

http://dx.doi.org/10.7868/S0424857015020061(http://dx.doi.org/10.1134/S1023193515020068).

Ю.Г. Лягаева, Д.А. Медведев, А.К. Демин, П. Циакарас, О.Г. Резницких. Термическое расширение материалов в системе церато-цирконата бария. Физика Твердого Тела. 2015. Т. 57, № 2. Р. 272–276.

http://journals.ioffe.ru/ftt/2015/02/page-272.html.ru (http://dx.doi.org/10.1134/S1063783415020250).

Д.А. Медведев, А.А. Мурашкина, А.К. Демин. Формирование плотных электролитов на основе BaCeO3 и BaZrO3 для применения в твердооксидных топливных элементах: роль активного твердофазного спекания. Обзорный Журнал по Химии. 2015. Т. 5, № 3. С. 221–242.

http://dx.doi.org/10.1134/S2218114815030021 (http://dx.doi.org/10.1134/S2079978015030024).

  • 2014 год:
    • статьи в зарубежных журналах

Maxim Ananyev, Dmitry Medvedev, Alexandr Gavrilyuk, Stratigoula Mitri, Anatoly Demin, Vyacheslav Malkov, Panagiotis Tsiakaras. Cu and Gd co-doped BaCeO3 proton conductors: Experimental vs SEM image algorithmic-segmentation results. Electrochimica Acta. 2014. V. 125. P. 371–379.

http://dx.doi.org/10.1016/j.electacta.2013.12.161.

A. Kalyakin, G. Fadeyev, A. Demin, E. Gorbova, A. Volkov, A. Brouzgou, P. Tsiakaras. Hydrogen measurement in N2+H2+H2O mixtures by the aid of amperometric sensors based on solid oxide proton-conducting electrolytes. Electrochimica Acta. 2014. V. 141. P. 120–125.

http://dx.doi.org/10.1016/j.electacta.2014.06.146 .

L.A. Dunyushkina, S.V. Smirnov, V.M. Kuimov, V.P. Gorelov. Electrical conductivity of CaZr0.9Y0.1O3–δ films deposited from liquid solutions. International Journal of Hydrogen Energy. 2014. V. 39, № 32. P. 18385–18391.

http://dx.doi.org/10.1016/j.ijhydene.2014.09.008.

D.A. Medvedev, E.V. Gorbova, A.K. Demin, P.E. Tsiakaras. Conductivity of Gd-doped BaCeO3 protonic conductor in Н2–Н2О–О2 atmospheres. International Journal of Hydrogen Energy. 2014. V. 39, № 36. P. 21547–21552.

http://dx.doi.org/10.1016/j.ijhydene.2014.09.019.

    • статьи в российских журналах

Ю.Г. Лягаева, Д.А. Медведев, А.К. Демин, Т.В. Ярославцева, С.В. Плаксин, Н.М. Поротникова. Особенности получения плотной керамики на основе цирконата бария. Физика и Техника Полупроводников. 2014. Т. 48, № 10. C. 1388–1393.

 http://journals.ioffe.ru/ftp/2014/10/page-1388.html.ru (http://dx.doi.org/10.1134/S1063782614100182).