Medvedev Dmitry

Senior researcher, PhD (Chemistry)

Scientific interests include design and application of new solid oxide materials for high-temperature electrochemical devices (solid oxide fuel and electrolysis cells, membrane reactors, pump and sensors).

Publication activity: According to the Web of Science database – 70 scientific papers, about 800 citations, h-index = 14. According to SCOPUS database 70 publications, about 850 citations, h-index = 15.

Short CV

CV (in Russian)

Scientific activity:

.

.

Detailed information on publication activity:

no. Authors/title/journal information Imact-factor (IF)
DOI
Remarks
2008
1. E. Gorbova, V. Maragou, D. Medvedev, A. Demin, P. Tsiakaras. Influence of sintering additives of transition metals on the properties of gadolinium-doped barium cerate. Solid State Ionics. 2008. V.179. № 21–26. P. 887–890. IF=2.751
10.1016/j.ssi.2008.02.065

http://doi.org/cjm62s

2. E. Gorbova, V. Maragou, D. Medvedev, A. Demin, P. Tsiakaras. Investigation of the protonic conduction in Sm doped BaCeO3. Journal of Power Sources. 2008. V.181. № 2. P. 207–213. IF=6.945
10.1016/j.jpowsour.2008.01.036

http://doi.org/bp6hgq

3. E. Gorbova, V. Maragou, D. Medvedev, A. Demin, P. Tsiakaras. Influence of Сu on the properties of gadolinium-doped barium cerate. Journal of Power Sources. 2008. V.181. № 2. P. 292–296. IF=6.945
10.1016/j.jpowsour.2007.11.049.

http://doi.org/dn2792

2010
4. Д.А. Медведев, Т.А. Журавлева, А.А. Мурашкина, В.С. Сергеева, Б.Д. Антонов. Электрофизические свойства материалов на основе BaGdCo2O5+d. Журнал Физической химии. 2010. Т. 84. № 9. С. 1777–1781.
Original Russian text
D.A. Medvedev, T. A. Zhuravleva, A. A. Murashkina, V. S. Sergeeva,  B. D. Antonov. Eletrophysical properties of materials based on BaGdCo2O5+d. Russian Journal of Physical Chemistry A. 2010. V. 84. № 9. P. 1623–1627. IF=0.580
10.1134/S0036024410090311

http://doi.org/ftp584

2011
5. D. Medvedev, V. Maragou, T. Zhuravleva, A. Demin, E. Gorbova, P. Tsiakaras. Investigation of the structural and electrical properties of Co-doped BaCe0.9Gd0.1O3–d. Solid State Ionics. 2011. V. 182. № 1. P. 41–46. IF=2.751
10.1016/j.ssi.2010.11.008

http://doi.org/b52c5s

6. Е.Ю. Пикалова, А.А. Мурашкина, Д.А. Медведев. Структурные и электрические свойства системы Ce0.8(Sm1–xCax)0.2O2–δ (х = 0.0–1.0). Электрохимия. 2011. Т. 47, № 6. С. 728–737.
Original Russian text
E.Yu. Pikalova, A.A. Murashkina, D.A. Medvedev. Structural and electric properties

of the Ce0.8(Sm1–xCax)0.2O2–δ system (x = 0.0–1.0). Russian Journal of Electrochemistry. 2011. V. 47, № 6, P. 681–689.

IF=0.880
10.1134/S1023193511060115.

http://doi.org/fwqf4q

7. Д.А. Медведев, Е.В. Горбова, А.К. Демин, Б.Д. Антонов. Структура и электрические свойства BaCe0.77–xZrxGd0.2Cu0.03O3–δ. Электрохимия. 2011. Т. 47, № 12. С. 1504–1510.
Original Russian text
D.A. Medvedev, E.V. Gorbova, A.K. Demin, B.D. Antonov. Structure and electrical properties of BaCe0.77–xZrxGd0.2Cu0.03O3–δ. Russian Journal of Electrochemistry. 2011. V. 47, № 12, P. 1404–1410. IF=0.880
10.1134/S1023193511090138

http://doi.org/fzjcds

2012
8. A.A. Murashkina, V. Maragou, D. Medvedev, V. Sergeeva, A. Demin, P. Tsiakaras. Single phase materials based on Co-doped SrTiO3 for mixed ionic-electronic conductors applications. Journal of Power Sources. 2012. V. 210. P. 339–344. IF=6.945
10.1016/j.jpowsour.2012.02.066

http://doi.org/f32xbr

9.

А.А. Мурашкина, В.С. Сергеева, Д.А. Медведев, А.К. Демин. Синтез и исследование структурных, электрохимических и термомеханических свойств твердых растворов состава    Sr1–xGdxTi0.5Fe0.5O3–δ. Перспективные материалы. 2012. Т. 4 . С. 29–35.

10. A.A. Murashkina, V. Maragou, D. Medvedev, V. Sergeeva, A. Demin, P. Tsiakaras. Electrochemical properties of ceramic membranes based on SrTi0.5Fe0.5O3–δ in reduced atmosphere. International Journal of Hydrogen Energy. 2012. V. 37, № 19. P. 14569–14575. IF=4.229
10.1016/j.ijhydene.2012.06.066

http://doi.org/f4cz2x

2013
11. D. Medvedev, V. Maragou, E. Pikalova, A. Demin, P. Tsiakaras. Novel composite solid state electrolytes on the base of BaCeO3 and CeO2 for intermediate temperature electrochemical devices. Journal of Power Sources. 2013. V. 221. P. 217–227. IF=6.945
10.1016/j.jpowsour.2012.07.120

http://doi.org/cc4k

12. Д.А. Медведев, Е.Ю. Пикалова, А.К. Демин, В.Р. Хрустов, И.В. Николаенко, А.В. Никонов,

В.Б. Малков, Б.Д. Антонов. Наноструктурированные композитные материалы на основе оксида церия и церата бария. Журнал Физической Химии. 2013. Т. 87, № 2. P. 275–283.

Original Russian text
D.A. Medvedev, E.Yu. Pikalova, A.K. Demin, V.R. Khrustov, I.V. Nikolaenko, A.V. Nikonov, V.B. Malkov, B.D. Antonov. Nanostructured composite materials of cerium oxide and barium cerate. Russian Journal of Physical Chemistry A. 2013. V. 87, № 2. Р. 270–277. IF=0.580
10.1134/S0036024413020209

http://doi.org/cc4m

13. А.А. Мурашкина, Д.А. Медведев, В.С. Сергеева, А.К. Демин. Получение водорода методом электрохимической конверсии этанола. Мембраны и Мембранные технологии. 2013. Т. 3, № 1. С. 57–62.
Original Russian text
A. A. Murashkina, D.A. Medvedev, V. S. Sergeeva, A. K. Demin. Hydrogen production by electrochemical reforming of ethanol. Petroleum Chemistry. 2013. V. 53, № 7. P. 489–493. IF=0.932
10.1134/S0965544113070128

http://doi.org/cc4n

2014
14. D. Medvedev, A. Murashkina, E. Pikalova, A. Demin, A. Podias, P. Tsiakaras. BaCeO3: materials development, properties and application. Progress in Materials Science. 2014. V. 60. P. 72–129. IF=23.750
10.1016/j.pmatsci.2013.08.001

http://doi.org/b9zm

Review
15. E.Yu. Pikalova, А.А. Murashkina, D.A. Medvedev, P.S. Pikalov, S.V. Plaksin. Microstructure and electrical properties of the composites based on  SrTi0.5Fe0.5O3−δ and Ce0.8(Sm0.8Sr0.2)0.2O2−δ. Solid State Ionics. 2014. V. 262. Р. 640–644. IF=2.751
10.1016/j.ssi.2013.10.036

http://doi.org/cc4p

16. E.A. Filonova, A.S. Dmitriev, E.Yu. Pikalova, D.A. Medvedev, P.S. Pikalov. Structural, electrical properties of Sr2Ni0.75Mg0.25MoO6 and its compatibility with solid state electrolytes. Solid State Ionics. 2014. V. 262. Р. 365–369. IF=2.751
10.1016/j.ssi.2013.11.036

http://doi.org/cc4q

17. M. Ananyev, A. Gavrilyuk, D. Medvedev, S. Mitri, A. Demin, V. Malkov, P. Tsiakaras. Cu and Gd co-doped BaCeO3 proton conductors: experimental vs SEM image algorithmic-segmentation results. Electrochimica Acta. 2014. V. 125. P. 371–379. IF=5.116
10.1016/j.electacta.2013.12.161

http://doi.org/f5z3tp

18. Ю.Г. Лягаева, Д.А. Медведев, А.К. Демин, Т.В. Ярославцева,  С.В. Плаксин, НМ. Поротникова. Особенности получения плотной керамики на основе цирконата бария. Физика и Техника Полупроводников. 2014. Т. 48, № 10.  С. 1388–1393.
Original Russian text
Yu.G. Lyagaeva, D.A. Medvedev,  A.K. Demin, TV. Yaroslavtseva, S.V. Plaksin, N.M. Porotnikova. Preparation features of dense ceramics based on barium zirconate. Semiconductors. 2014. V. 48, № 10. Р. 1353–1358. IF=0.672
10.1134/S1063782614100182

http://doi.org/cc4r

19. D. Medvedev, E. Pikalova, A. Demin, A. Podias, I. Korzun, B. Antonov, P. Tsiakaras. Structural, thermomechanical and electrical properties of new (1−x)Ce0.8Nd0.2O2−δ – xBaCe0.8Nd0.2O3−δ composites. Journal of Power Sources. 2014. V. 267. P. 269–279. IF=6.945
10.1016/j.jpowsour.2014.05.070

http://doi.org/cc4s

20. Н.М. Поротникова, М.В. Ананьев, В.А. Еремин, А.С. Фарленков, Д.А. Медведев, А.А. Панкратов,

С.В. Плаксин, Э.Х. Курумчин. Изотопный обмен кислорода композиционного материала LSM–YSZ в условиях длительных испытаний. Электрохимия. 2014. Т. 50, № 7. C. 758–767.

Original Russian text
N. M. Porotnikova,  M. V. Ananyev, V. A. Eremin, A. S. Farlenkov, D.A. Medvedev, A. A. Pankratov,

S. V. Plaksin, E. Kh. Kurumchin. Oxygen isotope exchange in the LSM-YSZ composite under the conditions of long-term tests. Russian Journal of Electrochemistry. 2014. V. 50, № 7. P. 680–689.

IF=0.880
10.1134/S102319351407012X

http://doi.org/f6b5bn

21. A. Murashkina, E. Pikalova, D. Medvedev, A. Demin, P. Tsiakaras. Hydrogen production aided by new (1–x)SrTi0.5Fe0.5O3−δ – Ce0.8(Sm0.8Sr0.2)0.2O2−δ (MIEC) composite membranes. International Journals of Hydrogen Energy. 2014. V. 39, № 24. P. 12472–12479. IF=4.229
10.1016/j.ijhydene.2014.06.068

http://doi.org/f6fj34

22. D.A. Medvedev, E.V. Gorbova, A.K. Demin, P. Tsiakaras. Conductivity of Gd-doped BaCeO3 protonic conductor in Н2–Н2О–О2 atmospheres. International Journals of Hydrogen Energy. 2014. V. 36, № 36. P. 21547-21552. IF=4.229
10.1016/j.ijhydene.2014.09.019

http://doi.org/f6wg5s

2015
23. D. Medvedev, Yu. Lyagaeva, S. Plaksin, A. Demin, P. Tsiakaras. Sulphur and carbon tolerance of BaCeO3–BaZrO3 proton-conducting materials. Journal of Power Sources. 2015. V. 273. P. 716–723. IF=6.945
10.1016/j.jpowsour.2014.09.116

http://doi.org/f6r5fv

24. S. Mitri, D. Medvedev, S. Kontou, E. Gorbova, A. Demin, P. Tsiakaras. Polarization study of Fe|BaCe0.5Zr0.3Y0.08Yb0.08Cu0.04O3–δ|Fe electrochemical cells in wet H2 atmosphere. International Journal of Hydrogen Energy. 2015. V.40, № 42. P. 14609–14615. IF=4.229
10.1016/j.ijhydene.2015.05.020.

http://doi.org/f7xc3v

25. Ю.Г. Лягаева, Д.А. Медведев, А.К. Демин, П. Циакарас, О.Г. Резницких. Термическое расширение материалов в системе церато-цирконата бария. Физика Твердого Тела. 2015. Т. 57, № 2. С. 272–276.
Original Russian text
J.G. Lyagaeva, D.A. Medvedev, A.K. Demin, P. Tsiakaras, O.G. Reznitskikh. Thermal expansion of materials in the system of barium cerate–zirconate. Physics of the Solid State. 2015. V. 57, № 2. P. 285–289. IF=0.925
10.1134/S1063783415020250

http://doi.org/cc4t

26. J. Lyagaeva, D. Medvedev, A. Demin, P. Tsiakaras. Insights on thermal and transport features of BaCe0.8–xZrxY0.2O3–δ proton-conducting materials. Journal of Power Sources. 2015. V. 278. P. 436–444. IF=6.945
10.1016/j.jpowsour.2014.12.024

http://doi.org/f64k63

27. Ю.Г. Лягаева, Д.А. Медведев. Структура и транспортные свойства композитных материалов на основе Ce0.8Nd0.2O2–δ и BaCe0.8Nd0.2O3. Chimica Techno Acta. 2015. V. 2, № 1. С. 29–41.
Original Russian text
Ju.G. Lyagaeva, D.A. Medvedev. Structure and transport properties of composite materials on a basis of Ce0.8Nd0.2O2–δ and BaCe0.8Nd0.2O3. Chimica Techno Acta. 2015. V. 2, № 1. P. 28–38.

 

10.15826/chimtech.2015.2.1.003

http://doi.org/cc4v

28. Д.А. Медведев, А.А. Мурашкина, А.К. Демин. Формирование плотных электролитов на основе BaCeO3 и BaZrO3 для применения в твердооксидных топливных элементах: роль активного твердофазного спекания. Обзорный Журнал по Химии. 2015. Т. 5, № 3. С. 221–242.
Original Russian text
D.A. Medvedev, A.A. Murashkina, A.K. Demin. Formation of dense electrolytes on the base of BaCeO3 and BaZrO3 for solid oxide fuel cells application: the role of the solid-state reactive sintering method. Review Journal of Chemistry. 2015. V. 5, № 3. Р. 193–213.
10.1134/S2079978015030024

http://doi.org/b9zn

Review
29. J. Lyagaeva, D. Medvedev, E. Filonova, A. Demin, P. Tsiakaras. Textured BaCe0.5Zr0.3Ln0.2O3−δ (Ln = Yb, Y, Gd, Sm, Nd and La) ceramics obtained by the aid of solid-state reactive sintering method. Scripta Materialia. 2015. V. 109. P. 34–37. IF=4.163
10.1016/j.scriptamat.2015.07.012

http://doi.org/cc4w

30. С.А. Войтукевич, Е.В. Никитина, Д.А. Медведев. К решению расчётных химических задач с неполным условием. Химия в Школе. 2015. Т. 8. С. 10–16.
2016
31. Е.А. Филонова, Л.С. Скутина, Д.А. Медведев. Фазовые переходы и термическое расширение в твердых растворах Sr2–xBaxNiMoO6 и Sr2Ni1–yZnyMoO6. Неорганические материалы. 2016. Т. 52, № 1. С. 60–65.
Original Russian text
E.A. Filonova, L.S. Skutina, D.A. Medvedev. Phase transitions and thermal expansion of Sr2–xBaxNiMoO6 and Sr2Ni1–yZnyMoO6 solid solutions. Inorganic Materials. 2016. V. 52, № 1. P. 57–62. IF=0.699
10.1134/S0020168516010076

http://doi.org/f74f7r

32. D.A. Medvedev, J.G. Lyagaeva, E.V. Gorbova, A.K. Demin, P. Tsiakaras. Advanced materials for SOFC application: strategies for the development of highly conductive and stable solid oxide proton electrolytes. Progress in Materials Science. 2016. V. 75. P. 38–79. IF=23.750
10.1016/j.pmatsci.2015.08.001

http://doi.org/b9zk

Review
33. A. Kalyakin, J. Lyagaeva, D. Medvedev, A. Volkov, A. Demin, P. Tsiakaras. Characterization of proton-conducting electrolyte based on La0.9Sr0.1YO3–δ and its application in a hydrogen amperometric sensor. Sensors and Actuators B: Chemical. 2016. V. 225. P. 446–452. IF=5.667
10.1016/j.snb.2015.11.064

http://doi.org/cc4x

34. E. Pikalova, D. Medvedev. Effect of anode gas mixture humidification on the electrochemical performance of the BaCeO3-based Protonic Ceramic Fuel Cell. International Journal of Hydrogen Energy. 2016. V. 41, № 6. P. 4016–4025. IF=4.229
10.1016/j.ijhydene.2015.11.092

http://doi.org/f8dnmn

35. J. Lyagaeva, B. Antonov, L. Dunyushkina, V. Kuimov, D. Medvedev, A. Demin,  P. Tsiakaras. Acceptor doping effects on microstructure, thermal and electrical properties of proton-conducting BaCe0.5Zr0.3Ln0.2O3−δ (Ln = Yb, Gd, Sm, Nd, La or Y) ceramics for solid oxide fuel cell applications. Electrochimica Acta. 2016. V. 192. P. 80–88. IF=5.116
10.1016/j.electacta.2016.01.144

http://doi.org/cc4z

36. A. Kalyakin, A. Volkov, J. Lyagaeva, D. Medvedev, A. Demin, P. Tsiakaras. Combined amperometric and potentiometric hydrogen sensors based on BaCe0.7Zr0.1Y0.2O3−δ proton-conducting ceramic. Sensors and Actuators B: Chemical. 2016. V. 231. P. 175–182. IF=5.667
10.1016/j.snb.2016.03.017

http://doi.org/b9zp

37. Ю.Г. Лягаева, Г.К. Вдовин, И.В. Николаенко, Д.А. Медведев, А.К. Демин. Модифицирование BaCe0.5Zr0.3Y0.2O3–δ оксидом меди: влияние на структурные и транспортные свойства. Физика и Техника Полупроводников. 2016. Т. 50, № 6.  С. 854–858.
Original Russian text
Yu.G. Lyagaeva, G.K. Vdovon, I.V. Nikolaenko, D.A. Medvedev, A.K. Demin. The modification of BaCe0.5Zr0.3Y0.2O3–δ with copper oxide: effect on the structural and transport properties. Semiconductors. 2016. V. 50, № 6. P. 839–843. IF=0.672
10.1134/S1063782616060142

http://doi.org/cc42

38. N. Danilov, G. Vdovin, O. Reznitskikh, D. Medvedev, A. Demin, P. Tsiakaras. Physicо-chemical characterization and transport features of proton-conducting Sr-doped LaYO3 electrolyte ceramics. Journal of the European Ceramic Society. 2016. V. 36, № 11. P. 2795–2800. IF=3.794
10.1016/j.jeurceramsoc.2016.04.018

http://doi.org/cc43

39. D. Medvedev, J. Lyagaeva, G. Vdovin, S. Beresnev, A. Demin, P. Tsiakaras. A tape calendaring method as an effective way for the preparation of proton ceramic fuel cells with enhanced performance. Electrochimica Acta. 2016. V. 210. P. 681–688. IF=5.116
10.1016/j.electacta.2016.05.197

http://doi.org/b9zs

40. N. Kochetova, I. Animitsa, D. Medvedev, A. Demin, P. Tsiakaras. Recent activity in the development of proton-conducting oxides for high-temperature applications. RSC Advances. 2016. V. 6, № 77. P. 73222–73268. IF=2.936
10.1039/c6ra13347a

http://doi.org/b9zj

Review
41.

J. Lyagaeva, N. Danilov, G. Vdovin, J. Bu, D. Medvedev, A. Demin, P. Tsiakaras. A new Dy-doped BaCeO3–BaZrO3 proton-conducting material as a promising electrolyte for reversible solid oxide fuel cells. Journal of Materials Chemistry A. 2016. V. 4, № 40. P. 15390–15399.

IF=9.931
10.1039/C6TA06414K

http://doi.org/b9zr

2017
42. J. Lyagaeva, D. Medvedev, E. Pikalova, S. Plaksin, A. Brouzgou, A. Demin, P. Tsiakaras. A detailed analysis of thermal and chemical compatibility of cathode materials suitable for BaCe0.8Y0.2O3–δ and BaZr0.8Y0.2O3–δ proton electrolytes for solid oxide fuel cell application. International Journal of Hydrogen Energy. 2017. V. 42, № 3. P. 1715–1723. IF=4.229
10.1016/j.ijhydene.2016.07.248

http://doi.org/f9vcgx

43. Е.Ю. Пикалова, Д.А. Медведев, А.Ф. Хасанов. Структура, стабильность и термомеханические свойства Ca-замещенного Pr2NiO4+δ. Физика и Техника Полупроводников. 2017. Т. 59, № 4.  С. 679–687.  
Original Russian text
E.Yu. Pikalova, D.A. Medvedev, A.F. Hasanov. Structure, stability, and thermomechanical properties of Ca-substituted Pr2NiO4+δ. Semiconductors. 2017. V. 59, № 4. P. 694–702. IF=0.672
10.1134/S1063783417040187

http://doi.org/f96crd

44. N. Danilov, J. Lyagaeva, A. Kasyanova, G. Vdovin, D. Medvedev, A. Demin, P. Tsiakaras. The effect of oxygen and water vapor partial pressures on the total conductivity of BaCe0.7Zr0.1Y0.2O3–δ. Ionics. 2017. V. 23, № 3. P. 795–801. IF=2.347
10.1007/s11581-016-1961-1

http://doi.org/cc44

45. D. Medvedev, A. Kalyakin, A. Volkov, A. Demin, P. Tsiakaras. Electrochemical moisture analysis by combining oxygen- and proton-conducting ceramic electrolytes. Electrochemistry Communications. 2017. V. 76. P. 55–58. IF=4.660
10.1016/j.elecom.2017.01.003

http://doi.org/f9x367

46. A. Volkov, E. Gorbova, A. Vylkov, D. Medvedev, A. Demin, P. Tsiakaras. Design and applications of potentiometric sensors based on proton-conducting ceramic materials. A brief review. Sensors and Actuators: B. Chemical. 2017. V. 244. P. 1004–1015. IF=5.667
10.1016/j.snb.2017.01.097

http://doi.org/f93vt6

Review
47. E.P. Antonova, A.A. Kolchugin, E.Yu. Pikalova, D.A. Medvedev, N.M. Bogdanovich. Development of electrochemically active electrodes for BaCe0.89Gd0.1Cu0.01O3–δ proton-conducting electrolyte. Solid State Ionics. 2017. V. 306. P. 55–61. IF=2.751
10.1016/j.ssi.2017.02.001

http://doi.org/cc45

48. L.S. Skutina, A.I. Vylkov, D.A. Medvedev, E.A. Filonova. Features of structural, thermal and electrical properties of Mo-based composite materials as fuel electrodes for high-temperature applications. Journal of Alloys and Compounds. 2017. V. 705. P. 854–861. IF=3.779
10.1016/j.jallcom.2017.02.193

http://doi.org/cc46

49. J. Lyagaeva, N. Danilov, D. Korona, A. Farlenkov, D. Medvedev, A. Demin, I. Animitsa, P. Tsiakaras. Improved ceramic and electrical properties of CaZrO3-based proton-conducting materials prepared by a new convenient combustion synthesis method. Ceramics International. 2017. V. 43, № 9. P. 7184–7192. IF=3.057
10.1016/j.ceramint.2017.03.006.

http://doi.org/f9847s

50. A.A. Murashkina, E.Yu. Pikalova, D.A. Medvedev. Gd-doped SrTi0.5Fe0.5O3δ mixed ionic-electronic conductors: structural, thermal and electrical properties. Ionics. 2017. V. 23, № 9. P. 2351–2357. IF=2.347
10.1007/s11581-017-2075-0

http://doi.org/cc47

51. N. Danilov, J. Lyagaeva, G. Vdovin, D. Medvedev, A. Demin, P. Tsiakaras. An electrochemical approach for analyzing electrolyte transport properties and their effect on protonic ceramic fuel cell performance. ACS Applied Materials & Interfaces. 2017. V. 9, № 32. P. 26874–26884. IF=8.097
10.1021/acsami.7b07472

http://doi.org/ccwr

52. N.A. Danilov, A.P. Tarutin, J.G. Lyagaeva, E.Yu. Pikalova, A.A Murashkina, D.A. Medvedev, M.V. Patrakeev, A.K. Demin. Affinity of YBaCo4O7+δ-based layered cobaltites with protonic conductors of cerate-zirconate family. Ceramics International. 2017. V. 43, № 17. P. 15418–15423. IF=3.057
10.1016/j.ceramint.2017.08.083

http://doi.org/ccwq

53. J. Lyagaeva, G. Vdovin, L. Hakimova, D. Medvedev, A. Demin, P. Tsiakaras. BaCe0.5Zr0.3Y0.2–xYbxO3–δ proton-conducting electrolytes for intermediate-temperature solid oxide fuel cells. Electrochimica Acta. 2017. V. 251. P. 554–561. IF=5.116
10.1016/j.electacta.2017.08.149

http://doi.org/ccwp

54. N. Danilov, E. Pikalova, J. Lyagaeva, B. Antonov, D. Medvedev, A. Demin, P. Tsiakaras. Grain and grain boundary transport in BaCe0.5Zr0.3Ln0.2O3−δ (Ln – Y or lanthanide) electrolytes attractive for protonic ceramic fuel cells application. Journal of Power Sources. 2017. V. 366. P. 161–168. IF=6.945
10.1016/j.jpowsour.2017.09.021

http://doi.org/cc34

2018
55. A. Kalyakin, A. Volkov, A. Vylkov, E. Gorbova, D. Medvedev, A. Demin, P. Tsiakaras. An electrochemical method for the determination of concentration and diffusion coefficient of ammonia‑nitrogen gas mixtures. Journal of Electroanalytical Chemistry. 2018. V. 808. P. 133–136. IF=3.235
10.1016/j.jelechem.2017.12.001

http://doi.org/cg25

56. Ю.Г. Лягаева, Н.А. Данилов, М.Ю. Горшков, Г.К. Вдовин, Б.Д. Антонов, Д.А. Медведев, A.K. Демин. Функциональность никелитов лантана, неодима и празеодима как перспективных электродных систем для протонпроводящих электролитов. Журнал прикладной химии. 2018. Т. 91. № 4. C. 513–521.  
Original Russian text
Yu.G. Lyagaeva, N.A. Danilov, M.Yu. Gorshkov, G.K. Vdovin, B.D. Antonov, D.A. Medvedev, A.K. Demin. Functionality of lanthanum, neodymium, and praseodymium nickelates as promising electrode systems for proton-conducting electrolytes. Russian Journal of Applied Chemistry. 2018. V. 91. № 4. P. 583–590. IF=0.494
10.1134/S1070427218040080

http://doi.org/crvg

57. А.В. Касьянова, Ю.Г. Лягаева, Н.А. Данилов, С.В. Плаксин, А.С. Фарленков, Д.А. Медведев, А.К. Демин. Керамические и транспортные характеристики электролитов на основе Mg-допированного LaYO3. Журнал прикладной химии. 2018. Т. 91. № 5. C. 143–150.  
Original Russian text
A.V. Kasyanova, J.G. Lyagaeva, N.A. Danilov, S.V. Plaksin, A.S. Farlenkov, D.A. Medvedev, A.K. Demin. Ceramic and transport characteristics of electrolytes based on Mg-doped LaYO3. Russian Journal of Applied Chemistry. 2018. V. 91. № 5. P. 770–777. IF=0.494
10.1134/S1070427218050075

http://doi.org/csgk

58. J. Lyagaeva, N. Danilov, A. Tarutin, G. Vdovin, D. Medvedev, A. Demin, P. Tsiakaras. Designing a protonic ceramic fuel cell with novel electrochemically active oxygen electrodes based on doped Nd0.5Ba0.5FeO3–δ. Dalton Transactions. 2018. V. 47. № 24. P. 8149–8157. IF=4.099
10.1039/c8dt01511b

http://doi.org/crgk

59. E. Pikalova, A. Kolchugin, N. Bogdanovich, D.A. Medvedev, J. Lyagaeva, I. Vedmid, M. Ananyev, S. Plaksin, A. Farlenkov. Stability of Pr2xCaxNiO4+δ as cathode materials for electrochemical devices based on oxygen ion and proton conducting solid state electrolytes. International Journal of Hydrogen Energy. 2018. In press. IF=4.229
10.1016/j.ijhydene.2018.06.023

http://doi.org/crvf

60. N. Danilov, J. Lyagaeva, G. Vdovin, E. Pikalova, D. Medvedev. Electricity/hydrogen conversion by the means of a protonic ceramic electrolysis cell with Nd2NiO4+δ-based oxygen electrode. Energy Conversion and Management. 2018. V. 172.  P. 129–137. IF=6.337
10.1016/j.enconman.2018.07.014

http://doi.org/crzd

61. N.A. Danilov, J.G. Lyagaeva, D.A. Medvedev, A.K. Demin, P. Tsiakaras. Transport properties of highly dense proton-conducting BaCe0.8–xZrxDy0.2O3–δ materials in low- and high-temperature ranges. Electrochimica Acta. 2018. V. 284. P. 551–559. IF=5.116
10.1016/j.electacta.2018.07.179

http://doi.org/cskt

62. N. Danilov, A. Tarutin, J. Lyagaeva, G. Vdovin, D. Medvedev. CO2-promoted hydrogen production in a protonic ceramic electrolysis cell. Journal of Materials Chemistry A.  2018. V. 6. № 34. P. 16341–16345. IF=9.931
10.1039/C8TA05820B

http://doi.org/cs3n

Correction: 10.1039/C8TA90204F
63. W. Wang, D. Medvedev, Z. Shao. Gas humidification impact on the properties and performance of perovskite-type functional materials in proton-conducting solid oxide cells. Advanced Functional Materials. 2018. V. 28, № 48. P. 1802592. IF=13.325
10.1002/adfm.201802592
Review
64. A.S. Kalyakin, J.G. Lyagaeva, A.Yu. Chuikin, A.N. Volkov, D.A. Medvedev. A high temperature electrochemical sensor based on CaZr0.95Sc0.05O3–δ for humidity analysis in oxidation atmospheres. Journal of Solid State Electrochemistry. 2018. In press. IF=2.509
10.1007/s10008-018-4108-7

http://doi.org/cvdf

2019
65.

L. Hakimova, A. Kasyanova, A. Farlenkov, J. Lyagaeva, D. Medvedev, A. Demin, P. Tsiakaras. Effect of isovalent substitution of La3+ in Ca-doped LaNbO4 on the thermal and electrical properties. Ceramic International. 2019. V. 45, № 1. P. 209–215.

IF=3.057
10.1016/j.ceramint.2018.09.153

http://doi.org/ctzt

 Patents